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ABSTRACT

In this paper, it is shown that the upper and lower bounds of the errors

in the Newton iterates recently obtained by Potra-Ptik [11] and Miel [7], with

the use of nondiscrete induction and majorizing sequence, respectively, follow

immediately from the Kantorovich theorem and the Kantorovich recurrence

relations. It is also shown that the upper and lower bounds of Miel are

sharper than those of Potra-Ptlk. / •  i,.t/L. i-ri1" I ,,,, ,, , '.-, ,)
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SIGNIFICANCE AND EXPLANATION

To find precise error bounds for iterative solutions of equations is one

of the important subjects in numerical analysis. This paper shows that the

* upper and lower bounds of the errors in the Newton iterates recently obtained

by Potra-Pthk [11] and Miel [7] follow from the Kantorovich theorem, and that

the bounds of Miel are sharper than those of Potra-Ptlk.
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ERROR BOUNDS FOR NEWTON' S ITERATES DERIVED FROM THE KANTOROVICH THEOREM4

Tetsuro Yamamoto

1. Introduction

.The Kantorovich theorem for the Newton method is of fundamental i~nportance

in the study of nonlinear equations in Euclidean and Banach spaces./Let X and

Y be Banach spaces, D be an open convex subset of X and F : D CX + Ybe

*a Fr~chet differentiable operator which satisfies a Lipschitz condition in D.

* Then, the theorem guarantees the existence and uniqueness of a solution of the

equation F(x) -0 and the convergence of the Newton process to the solution.

By replacing the original assumption that F belongs to C2 -ls in D by a

weaker one of the Lipschitz continuity of F' in D, an affine invariant I
version of the theorem is stated as follows:

Theorem 1 (Kantorovich-Akilov (4; Theorem 6 (I.XVIII)]). let F : D C X + Y be

Frfichet differentiable. Assume that, at some xo c D, FINx) is invertible

and that

IF' (x) (FI(x) - F'(y))I < Kix - yE, x,y c D (1)

IF'(x) F(x )I < n, h - Kn < 1/2 ,(2)

S(x01t*) C D, t* - 2rn/(1 + V1 -2h) .(3)

Then:

i) The Newton iterates xn+1 - xn - FI(xn)' F(xn), n a 0, are well-defined,

lie in S(x01 t*) and converge to a solution x* of F(x) - 0.

ii) The solution x* is unique in s(x0,t**) r) D, t** (I + /1 -2h)/K if

2h < 1, and in S(x0.t**) if 2h - 1.
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iii) Error estimates

ft* (n -0)

3x* - % 1 2 I-(2h) 2 1 nI n 1) ,(4)

are valid.

Remark 1. The importance of such an aftine invariant formulation is stressed in

Deufihard-Heindi (2].

Remark 2. The condition (3) may be replaced by the weaker conditions

xo eD, B(x 1 t -n)C D, (5)

which are due to Schmidt [14]. In fact, by induction on n and the well-known

majorant principle for the Newton iterates, we can prove that, under the

assumptions (1), (2) and (5), the Newton iterates are well-defined and

xn c (xl1t -r n 1

There are many literatures (l,3(]-](]-1]16)on the

improvements of the estimates (4). For example, under the assumptions of

Theorem 1 (or, by replacing (3) by (5)), the following results hold.

T2heorem. 2 (Gragg-Tapia (3]).

n n

21-n ~Ix I-xx0 if 2h< 1,

and

21x - xl n-i
< C I <80 Ix - I1 1, n > 1

4in nn -I(7)

1 + /I1+

where 0 -t*/t* (1 VI/ - 2h)/01 + VI - 2h)-

-2-
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a ori 3 (Potra-Ptk [11]). Let a - -2h/K and

Y(t) = /2 + 4t2 + 4t/2 + (t + 4i + t2 .

Then

Y(EXn+I -x nl) < Ix* - X n I = a n _ n- 112 a. (8)

eorm 4 ( 1iel (7]). Let A = t** - t*. Then

21xn+I - xn I<x* xI - e n  2

4 - n n n-i 1 (14 1 0 2n ( 9 ) .

1 + 1+ * ,x -
+ 2n  n+ n. 1 +

if 2h < 1, and

2+-- IX - X I ) < Ix* X l =< 2 n - I Ix n - Xn12 (10)

if 2h= 1.

SRemark 3. Let f(t) Kt2  t + n and define the sequence ft n }  by

to = 0, tn+ I ' tn - f(tn)/f'(tn), n a 0

Then the well-known majorant principle due to Kantorovich asserts that

Ix* - xni I t* - tn ,  n 0. (11)

The more general arguments are developed in Ortega-Rheinboldt [9] and Schmidt

(14], [15]. On the basis of Ostrowski's results (10; Appendix F], however, we

can show that the bounds (11) are the same as (6), provided that

TI Ix I - x0l. Furthermore, we note that the upper bounds in Theorems 2-4

coincideforn - I, and are equal to t* - tj - (I - h - 41 -2h)/K with

= TliIx - X 0 .

Theorem 2 was derived with the use of the Mantorovich recurrence relations.

Theorems 3 and 4, improved versions of Theorem 2, were obtained recently by

nondiscrete induction and the majorizing sequence, respectively. In (7], Niel

-3-
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has mentioned that it turns out that the upper bounds in (9) are sharper than

those in (8), and that numerical experiments also indicate that the lower bounds

in (9) are finer than those in (8). In this paper, with the use of the sam

technique as in the previous paper [17], we shall show that Theorems 3 and 4

follow imediately from Theorem I and that Theorem 4 improves Theorem 3.

2. Basic lemmas

To derive Theorems 3 and 4 from Theorem 1, we need the following basic

lemmas and give their proofs for the sake of completeness.

Iein 1. Under the assumptions of Theorem 1, define three sequences (B )

{in n }  and {hn} by

B n-1
S 0  ,Bn 1 -h 1

no Z1 IN n hn_-lnn- 1

O -0 n 2(1 - hn 1 )

h 
2

n-1
h h n , " nnn n  2(1 - h 1 )2  n 1,2,...

respectively. Then we have

IF'(x )-F'(x )I < B and UF'(xn)-F(xn)m ( Tn
n 0 -n n n n

In particular, if 2h- 1, then 2hn = 1 and nn - 2- 1 Tn_- 2"n,.

Proof. This is a direct application of the original recurrence relations to

F'(x0 )'IF (cf. Rall (13]). Q.E.D.

Kem 2. The speed of convergence of the iterates is estimated by

xn-1 21x-x - -x- x 1 (12)
n - 2 n-1

I4-
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Similarly we have

KB

Ix xx3I < xUx -x(13)
n+1 n = 2 • n-I

Proof. The estimates (12) follow from (1), Lemma 1 and the relations

x* - xn - -FI(X n~- {F(x*) -F(x n_ 1 I F'(X n-l)(X* - ))

1

- -F,(xn..ll-lF'(xo) f F,(Xo )- •
0

{F'l(x 1 + t(x* - Xn1 l - F'lx nl}x*- Xnl )dt.

Similarly, the estimates (13) follow from the relations

xn+1 - xn - F' (xn)- 1 F(x.)

- F,(Xn)-1(F(Xn-l) + F'(Xn-l)(Xn - xn_1)

+ f {F'(Xn_ 1 + t(xn - Xni)) - F'(Xn-l)l(xn - Xn 1l)dt,0

= n Fln-F ' I(x 0 1 [  F'lxO

* {F'(xn I + t(xn - Xn - F'(Xn-1}x n - Xn-1)dt]. Q.E.D.

lema 3 (Basic Error Estimates). Under the assumptions of Theorem 1, we have

21xn+ -x x I 21xn+ I - x nn1 n n n i
Ix- Xnl= •__ __ _ (14)

1 + / 1+2BnIxn+ 1 - xl I + v1 - 2KBnX - xn

Proof. Replace x0  and n in Theorem 1 by xn and IXn+i - Xnl,

respectively. Then (1) is replaced by

-1 -1
IF'(x )l(FI(x) - FI(y))l < IF'(x)FI(x0)I * IFI(x)(F'(x) -F-(y))l

KBnIx -yl, x,y c D

Therefore, the upper bounds in (14) follow from Theorem 1. Furthermore, we have

i ° ' : " . . . . . -. . . .< . . • , • .:. • . . ,. . , ", " . ..* ,% I, . " - : .. - - .. ,
.5-



from Lena 2

Ix - x I <Ix - I + 1* _ x I < In. x* - x 12 + 1x* - x I
n+1 n < n+ 1  n -2 n n

or

KBn Ix* - 12 + Ix* - x - +I  - XI > 0

Solving this yields the lower bounds in (14). Q.E.D.

lai 4. We have

Bn/1 - 2h - /1 2h-n, n 0, (15)

and

BA- 2h + (N 2= , n I 1 (16)

Proof. The equalities (15) and (16) are trivial for n = 0 and n 1,

respectively. If n 1 1, then we obtain

h 2  1 - 2h I - 2h0
I- 1 - 2hn-i _1_n-1__1_0

1-hn=1

h 2 (1 - h 2 12) go (I h
(1 -i_ n-i -i 01  -. 1 O

= (1 - 2h)B 2

which proves (15). Furthermore, if n 1 2, then we have

n-1
B 2 I ( hi)2

1=0
n-2 2 2 n-2

= (1 - 2hn- 1 ) - (1 - hi)2 + h 2
1 n1 (1 -hi )

i=O i=0
n-2 2

= i - 2h + {KB n_In-_I  (1 -hi))
i=O

2
= 1- 2h + (ln

n-2

since Bn 1  (1 - hi ) - 1. This proves (16). Q.E.D.

1=0

-6-
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3. Proof o 2heorem 3

Let us now prove Theorem 3. We put en = IXn+1 - xnl. Then, by Lemma 4, we

have

BI"1B1- A/  -2h + (Kn 12 > / 1 - 2 + (Ke )2
B =/n- n-1 "

Hence we obtain from Lemmas 2-4

2e 2e
IIx* -x I < n <n

,.n =1 + V1 - 2KBnen 1 + 1 1 Kn

n neI n-I

I+ 1 -2h B - 1

n n
I2

n-i
< 2 + n-

1 - 2h + (e 1 ) 2 +/ 1-2h

where a = i1 - 2h/K. Next, to derive the lower bounid in (8), we observe that

by Lemua 4

a" n 2h +2N

a nn-I n-i B n

2 +2
en 2 nnn-1 2 2

2 f2
en- + 2 een-i

or

which are equivalent to
(2 + 2  n2 a2 2

(41 + e - e >I + e n  (17)

Moreover we have

/c -1 - en' - 1,2,....

In fact, the inequalities (18) follow from the inequalities

-7-
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Bn 2 n-1 <1

n  --2 en_ 1  2(1 h en-1 ( 2 en- I On- I

Hence we have from (17)

2 e2  e "2 2

n-1 - n n

Consequently we obtain from Lemma 3

2e

Ix* xI >. n
1 +/1 + 2KB e

n n

2e
n

/,2 + n2
I 1 e c n n-i

2e n

t1,F 2e 12/2+ en n-i

2en + /0,2
1+ + 2e/(e + + e

pen~n (a2 + e 2 )

2e (e + e

e n2 + e2 + /e + +n), 3 e + + en

ye nn nn

This completes the proof of Theorem 3.

4. Proof of Theorm 4

To prove Theorem 4, we use Gragg-Tapia's result

2 I- 1- 2h__
m n  = - _1 - h n  , n = 0,1,2,... . (19)

1 + /1 - 2h
n

I 8
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If 2h < 1, then we have from (19)

En 1 1 2h 1 - 2 2 1 8 (20)
n l-2h =l= 1h + 0 i+ 2n

where A =t** - t*. If 2h =1, then obviously we have Bn 2n and

2e 2en n _f '

1 + VF~ 1 +K e en21

T1 n

Therefore the lower bounds in Theorem 4 coincide with those in Lemma 3.

Furthermore, we obtain from (20) and (19)

2n KB n XB 1KB
18 n( + 2  n 2 n-

A2 2 + 1 h+ 1 -2
n n

if 2h < I. Hence the upper bounds in (9) reduces to

22KB e K
Ex' xn nn-1 n-1

-1* -x I < (21)
n 1 i+'1 - 2h B 1+ V'1 -2h

n n

which follow immediately from Lemmas 2 and 3. The upper bounds in (10) also

reduce to (21) because Bn 2n' and K 1/2n if 2h =1. The proof is

completed.

5. Clbservations

LO) By our proofs of Theorems 3 and 4, we see that Potra-Ptfik's upper bounds

are obtained by replacing B 1  in the last expression of (21) by the smallern

quantities /7-2h + (Kn 1)
2 . Similarly the lower bounds y(e n) in (8) are

obtained if we replace K~n in the lower bounds in (14) by the larger

[ -9-
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quantities (e + a + e2) Therefore we can conclude that Theorem 4 is

finer than Theorem 3. we remark also that Gragg-Tapia's upper bounds in (6) and

(7) are equal to

n T
= n + and n en.. 1 ,(22)

n

respectively (cf. Yamamoto E117]). As was shown in El11, the upper bounds

of Potra-Pttk are sharper than (22). Furthermore, it is easy to see that the

lover bounds of Potra-Pt&k improve those of Gragg-Tapia in (7). (This fact

remains unproved in Eli].) Tob prove this, we note that the lower bounds in (7)

may be written

2e
n

I1+ ,1 + 2

and that

repc to t< Henc we obai that

1 ne n 7+ n n n ~ 1 1 t 2 ) i

Ackno wedgaee the fath woldle fntothnk Profsso -. W Sch io

n n

Technische Universit~t Dresden for his helpful comments which helped improve the

paper.
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